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The random Ising model on cacti lattices 

M F Thorpe 
Department of Physics, Michigan State University, East Lansing, MI 48824, USA 

Received 8 November 1977 

Abstract. We study the random bond Ising model on pseudolattices containing triangles. 
By using the star-triangle transformation, the problem can be mapped onto a Bethe lattice 
where the solution to the random bond problem is well known. We look at the solution for 
the dilute ferromagnet in detail. It is shown that the transition temperature goes to zero at 
the percolation concentration as we would expect. 

1. Introduction 

The study of the thermodynamics of random systems is difficult and it may be useful to 
study idealised and even unphysical systems. In this paper we study the random bond 
Ising model on a class of pseudolattices containing triangles. We show that the model 
can be solved exactly and look at the solution in detail for the special case of the dilute 
ferromagnet. 

The Hamiltonian for the system is 

H = - 1 J~,u~cT~ (1) 
( i i )  

where ci = *1 and the summation goes over only nearest neighbours such that each 
bond is counted once. The exchange interactions Jii are distributed at random 
according to a probability distribution function P ( J i j )  which is the same for all bonds in 
the lattice. That is the probability distribution function for the whole system factorises 
into a product of single bond probabilities P(Ji i ) .  We are therefore dealing with a 
quenched random system (Brout 1959, Mazo 1963, Thorpe and Beeman 1976). The 
free energy is calculated by generating a particular distribution of bonds. If the system 
is thermodynamically large (N  + 00) it is not necessary to average over all equivalent 
systems as all possible configurations will be present in a single member of the 
ensemble. However it may be convenient to do so and we will adopt that point of view 
in the next section where we find the free energy of a Bethe lattice that can be divided 
into two sublattices, one of which has coordination 3 and the other z .  The random 
Bethe lattice is very simple to treat because the precise arrangement of bonds is not 
important and the quenched and annealed problems give the same phase diagram 
provided that all the interactions have the same sign (Matsubara 1974, Thorpe and 
Beeman 1976, Young 1976). This solution is briefly derived in the next section. 

In 0 3, we utilise the asymmetric star-triangle transformation (see for example 
Syozi 1972) and generate the solution for a certain class of cacti lattices. This solution 
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is studied in detail in 9 4 for the dilute ferromagnet where the phase diagram is given 
for various cases, It is shown that the transition temperature goes to zero at the bond 
percolation concentration which is derived independently in the appendix. 

2. Bethe lattice 

In figure 1, we show a Bethe lattice with site coordination numbers 3 and z alternately 
( z  = 2 for the case drawn in the diagram). The simplifying feature of the Bethe lattice 
is that there is a unique path connecting any two points. The Hamiltonian (1) can be 

t t 
A 

Figure 1. A Bethe lattice that has two sublattices with coordination number 3 (open 
circles) and z = 2 (full circles). 

very simply solved by noting that we can transform to new variables 7ii such that 

(2 ) 7.. = U,(+. 
11 1 I 

where the T~~ = *l are independent variables for each bond. Therefore the Hamil- 
tonian (1) becomes a sum of single-particle Hamiltonians and the thermodynamic 
functions of interest can be found trivially. For example, the energy E is given by 

E = - 1 Jij tanh(pJij) = - J tanh(PJ)P(J) U. 
(ii) J 

The susceptibility per site x can be written as 

(3) 

where N is the total number of sites and the summation goes over all sites. Because of 
the property of the Bethe lattice that there is a unique path between any two points, 
we may write 

(uiuk)= ( ~ i ~ i + l ~ i + l ~ i + ~  . * ~ k - l ~ k )  
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therefore 

x = P ( 1 + ~ ) [ 1  - E + $ ( z  + 3 ) ~ ] / [ 1 - 2 ( ~  - l ) ~ ~ ]  (6 )  

where 

E = tanh(PJ)P(J) dJ 

is the average value of the nearest-neighbour spin-spin correlation function. 
The susceptibility has this simple form because of the observation (5) that turns the 

susceptibility into the sum of terms in a geometric series. The phase transition occurs 
when the susceptibility diverges, i.e. 

E =  = tanh(&J)P(J) dl = [2(2  - l)]-”’ 

where the subscript c denotes the value at the critical point. Notice that for a dilute 
ferromagnet the condition in (8) reduces to 

eC = p tanh(&J) = [2(z - 1)]-1’2 (9) 

where p is the concentration of ferromagnetic bonds. The transition temperature goes 
to zero at p c  given by 

1 

This is just the percolation concentration for this Bethe lattice as shown in the 
appendix (equation (A.11)). 

These results are derived for a Bethe lattice with sites that have coordination 
alternately 3 and z. They are a simple extension of known results for the Bethe lattice 
with a single kind of site. We are restricting our considerations in this and subsequent 
sections to the case where all the bonds are ferromagnetic, i.e. Jii L 0, so that we can 
just consider the ferromagnetic susceptibility (4). In cases where there are interactions 
of both signs, the situation is rather more complex and other susceptibilities may 
diverge at the phase transition. 

3. Cacti lattices 

The cacti lattices for which we can solve the random bond Ising model are shown in 
figure 2. They are formed by constructing triangles around all the sites in the Bethe 
lattice with coordination 3 so that we have a lattice made up of triangles such that z 
triangles come together at their vertices and each site has 22 nearest neighbours. The 
only rings in these lattices are the triangles themselves; there are no rings of triangles 
(for a further discussion see Domb 1960, p 284). 

Mathematically the transformation to the cacti lattices from the Bethe lattice can 
be achieved via the star-triangle transformation first used by Onsager (1944) and 
reviewed in detail for the asymmetric case by Syozi (1972) whose treatment we follow 
here. In figure 3, we show a star with interaction parameters (PJ) denoted by K1, Kz 
and K3 and a triangle with.interaction parameters L1, LZ and L3. By doing the trace 
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Figure 2. A triangular cacti lattice formed from the Bethe lattice in figure 1 by construc- 
ting triangles joining the three neighbours of the sites represented by open circles. The 
case z = 2 is drawn. 

1 

Figure 3. The figure illustrates the parameters used in the star-triangle transformation 
discussed in 8 3. 

over the spin uo, we have the mapping 

(1 1) C 
u o = t l  

e K ~ U ~ U ~  ~ K z ~ o ~ z  eK3QoU3 = A eLIaZu3 eL2u3u1 eL3ulu2 

i.e. 

2 cosh(Klul + K2u2 + K3a3)  = A eLlaZu3 eLzuSu1 eL3u1uz. 

2 cosh(K1 + K2 + K3) = A eL1 eL2 eL3 

2 cosh(-K1 + K 2  + K3) = A eL1 e-L2 e-=,. 

(12) 

(13) 

(14) 

[cosh(Ki -Kz-K~) ] / [ cos~(KI  +Kz+K3)] (15) 

This is an operator identity, where A is a constant. If we put all The spins up, we get 

and if we have spin-1 down and the other two up, 

From (13) and (14) we can eliminate A 
= 

and of course two other equations like (15) obtained by permuting the indexes 1, 2, 3. 
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With a little manipulation, we can get a more useful equation than (15) 

1 (1 + e-2(L1+L,) + e-2(L,+L3)+ e-2(L,+L,) 

x ( l+ tanhK1  tanhK2+tanhK2tanhKg+tanhK3 tanhKl)=4.  (16) 

This mapping allows all the thermodynamic functions for the cacti lattices to be found. 
We will concentrate on the phase boundary. Equation (8) may be rewritten 

3 
=l+- 

2(2 - 1)’ 

Now using the transformation (16) this can be rewritten (noting that = Ki, i = 
1,2 ,3) :  

(19) 
22 + 1 =- P(Jl)P(J2)P(J3) dJ1 d J 2  U3 1 3 I J5 1 + e-28JJ1+J2) + e-28c(Jz+J3) + e-28JJ3+J1) = 4 (’ +-) 8(2 - 1)’ 

We have written Li = @.Ti, i = 1 , 2 , 3  where the J1 refer to the exchange interactions on 
the cacti lattice. This equation (19) only involves the probability distribution P ( J )  and 
the exchange interactions J on the cacti lattice and we need not consider the Bethe 
lattice from which it was derived any further. Equation (19) is our central result. 

In the limit when there is no disorder 

P(J1) = 6 (Jl - J )  (20) 

(21) 

and (19) gives the transition temperature for the perfect ferromagnetic cactus: 

(22 - 3)/(22 + 1) e-48,J= 

which for 2 = 2 , 3 , 4  and 6 gives k T , / J =  2.4853, 4.7209, 6.8052 and 10.8777 
respectively. 

4. The dilute ferromagnet 

Equation (19) gives the phase boundary for any distribution P(J) .  However we must 
remember that this was derived from the expression for the divergence of the ferro- 
magnetic suceptibility on the Bethe lattice. Therefore it only holds if J L 0 for all the 
bonds. We will examine in more detail the interesting case of the dilute ferromagnet 
with a concentration p of ferromagnetic bonds: 

P(J1)= (1 -p)S(J1)+p6(J1-J) 

for which equation (19) becomes 

p 3  + 3p2(l  - p )  +3p( l  - P ) ~  (1 22 + 1 
1+3x2  1 + 2 x + x 2  2+2x 4 8(2-1) 

+-=- 
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where x =e-*? The phase boundary can easily be found by solving this cubic 
equation and is shown in figure 4. It can be seen that as p + 1 we recover the result for 
the pure ferromagnet and that Tc+ 0 as x + 0 and we get the equation 

3 3pC(l -P , )~  +A=- (1 - p  )3 22 + 1 
2 4 8 (2 - l )  P c  +3pf(l-p,)+ 

i.e. 

2(2 - l)(pc+p,2 - p c ’ ) =  1. (24) 

c 

I I I 
04 0 6  0 8  1Q 

P 

4. The phase boundaries for the dilute ferromagnet on the triangular cacti lattices 
with z = 2 , 3 , 4  and 6. 

This of course is just the percolation concentration for the lattice as can be demon- 
strated directly (see appendix, equation (A.15)). For z = 2 , 3 , 4  and 6 this leads to 
pc=0.4030, 0.2140, 0.1480 and 0.0923. The phase boundary comes into the 
percolation point with a vertical tangent and moreover all the higher derivatives are 
infinite also. This also happens in the Bethe lattice (see equation (9)) and is to be 
expected for any pseudo1attice.t 

5. Codusions 

We have shown that by using the a s y m c t r k  star-triangle transformation op the 
random bond Bethe lattice, the random bond triangular cacti lattice can be sdved. 
We are currently trying to use this idea to develop an approximate method of 
calculating the phase boundary in real lattices containing triangles. 

t Note added in proof. It has recently been shown that this is true for all lattices (Bergstresser T 1977 J. 
Phys. C :  Solid St. Phys. 10 3831-50). 
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Appendix 

The percolation concentration for pseudolattices is easily found (see for example 
Essam 1972). We will calculate it for the cases of interest in this paper as they do not 
appear to be in the literature. If p is the probability that a bond is occupied and 
4 = 1 - p  that it is empty, then we define a probability generating function P ( p ,  9) such 
that 

where C, is the probability of a given bond belonging to a cluster with r occupied 
bonds surrounded by s empty bonds that isolate it from the rest of the medium. Note 
that p ,  4 are treated as independent variables in P ( p ,  4). The mean cluster size m 
(below the percolation concentration) is given by 

It is useful to introduce an auxiliary function C ( p ,  4) which sums the probabilities of all 
bonds coming into a particular given bond. With two kinds of sites we have Zl(p, 4) 
corresponding to the coordination number 3, and Z 2 ( p ,  4) corresponding to coor- 
dination number z.  We have 

zl = 4 2 + 2 p 4 ~ 2 + p 2 ~ :  

Z1= (4 +pC2l2. 

E2 = (4 + p & ) * - l .  

i.e. 

Similarly 

Clearly when we put q = 1 - p ,  we have ZI = E2 = 1 as solutions to (A.4) and (AS). 
We can now write 

and so using (A.2) 

m = p  ( 
From (A.4) we have 
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and from (AS) 

ax2 -= (2 - l)(q +pzl)’-l(zl +p?). 
aP 

(A.9) 

Putting 4 = 1 -p into (A.8) and (A.9), we can solve for aXl/ap and aZ2/ap and hence 
find that the mean cluster size is given by 

which diverges at the percolation concentration p c  given by 

1 
[2(2 - 1 ) y ‘  P c  = 

(A. 10) 

(A. l l )  

Notice from (A.7) that the mean cluster size diverges when a&/ap and &/ap 
diverge. 

For the triangular cacti shown in figure 2, it is only necessary to use a single 
auxiliary function X given by 

(A.12) H = q2 + 2pq2H’-’ + (3p2q + p3)X2’ -2 

for which Z = 1 when q = 1 -p. Differentiating we have 

az ax ax 
aP aP aP ’ 
-=2q2XC‘-’ +2pq2(z - 1)X’-2-+(6pq + 3 ~ ~ ) 2 ~ ‘ - ~ + 2 ( 2  - 1)(3p2q + P ~ ) C ” - ~ -  

(A.13) 

Putting 4 = 1 -p, we find that 

az 2 + 2p -p2 
ap 1 -2(2 - i)(p + p 2 - p 3 ) ’  
-= (A.14) 

This diverges at the percolation concentration p c  given by the solution to the cubic 
equation: 

(A. 15) 1 = 2(2 - l)(pc +p: -pf).  
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